Electron microscopic study of the myelinated nerve fibres and the perineurial cell basement membrane in the diabetic human peripheral nerves

Wasib G. El-Barrany, PhD, Raid M. Hamdy, PhD, Abdulmonem A. Al-Hayani, PhD, Sawsan M. Jalahab, PhD

ABSTRACT

The objective of this study was to investigate the quantitative and ultrastructural changes in myelinated nerve fibers and the basement membranes of the perineurial cells in diabetic nerves.

Methods: The study was performed at the Department of Anatomy, Faculty of Medicine, King Abdul-Aziz University, Jeddah, Saudi Arabia from 2003 to 2005. Human sural nerves were obtained from 15 lower limbs and 5 diabetic nerve biopsies. The total number of myelinated nerve fibers per fascicle were calculated, with density of microtubules and mitochondria in the axoplasm. The number of the perineurial cell basement membrane layers was counted, and thickness of the basement membrane was measured.

Results: Among the 15 diabetic and 5 normal human sural nerves, the average diameters, number and surface area of myelinated nerve fibers and axonal microtubules density were found to be less in diabetic nerves. Mitochondrial density was higher in diabetic axons. Thickness of the perineural cell basement membrane had a greater mean, but the number of perineurial cell layers was less that of the diabetic group. The inner cellular layer of the perineurium of the diabetic nerves contained large vacuoles containing electron-dense degenerated myelin. A few specimens showed degenerated myelinated nerve fibers, while others showed recovering ones. Retracted axoplasm were encountered with albumin extravasation.

Conclusion: Diabetes caused an increase in perineurial permeability. The diabetic sural nerve showed marked decrease in the myelinated nerve fibers, increase degenerated mitochondria, and decreased microtubules.


From the Department of Anatomy (El-Barrany, Hamdy), Faculty of Medicine, Alexandria University, Alexandria, Egypt, and the Departments of Anatomy (Al-Hayani), and Pathology (Jalahab), Faculty of Medicine, King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia.

Received 1st November 2008. Accepted 28th January 2009.

Address correspondence and reprint requests to: Dr. Raid M. Hamdy, Department of Anatomy, Faculty of Medicine, King Abdul-Aziz University, PO Box 80205, Jeddah 21589, Kingdom of Saudi Arabia. Tel. +966 56739542, Fax. +966 (2) 640348. E-mail: nndhamdy@yahoo.com